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Relations between direct and reciprocal basis vectors and the atomic

displacement matrix and anisotropic temperature-factor matrix are provided

for generic dimension n, introducing a few new symbols. The moments of the

probability distribution of the anisotropic thermal ellipsoids are provided as

functions of dimension n. For speci®c dimensions n � 2 and n � 3, new explicit

formulas for the semi-axis lengths and rotation angles of the thermal ellipsoids

are derived from the atomic displacement matrix, taking into account certain

special cases. For dimension n � 3, the Euler angles are de®ned. The resulting

formulas can be used, for example, to display the thermal ellipsoids of atoms or

for further analysis of molecular vibrations.

1. Introduction

The dimension n of a diffracting object need not necessarily be

n � 3. Dimension n � 1 can be used for describing diffraction

by a line (Brussaard et al., 2002), dimension n � 2 for

diffraction by a surface (Robinson, 1998), dimension n � 3 for

diffraction by a volume, described in many textbooks, and

dimension n> 3 for diffraction by aperiodic crystals (de Wolff,

1974; Janner et al., 1983; Janssen et al., 1992; Steurer &

Haibach, 2001). A description of the crystallographic

symmetries for generic dimension n has been provided

(Janssen et al., 1999, 2002). The formulas for the direct and

reciprocal basis vectors, the atomic displacement matrix, the

anisotropic temperature-factor matrix and the symmetry

restrictions can be derived for generic dimension n. The semi-

axis lengths and rotation angles of the thermal ellipsoids can

be obtained by numerical diagonalization of the atomic

displacement matrix (Waser, 1955b; Cerrini, 1971; Willis &

Pryor, 1975; Prince, 1982; Trueblood et al., 1996; Grosse-

Kunstleve & Adams, 2002; Press et al., 2002). In this paper,

however, for speci®c dimensions n � 2 and n � 3, new explicit

formulas for the semi-axis lengths and rotation angles of the

thermal ellipsoid are derived from the atomic displacement

matrix, taking into account certain special cases, and ready to

be used for example for displaying the thermal ellipsoid, as in

ORTEP (Burnett & Johnson, 1996), or for further inter-

pretation in terms of molecular vibrations (Cruickshank,

1956a,b; Schomaker & Trueblood, 1968; Willis & Pryor, 1975;

Tanaka & Marumo, 1983; Dunitz et al., 1988; BuÈ rgi, 1995).

The content of this paper is organized as follows. The

generic direct and reciprocal basis vectors are de®ned in x2,

and their mutual relation is derived, introducing a few new

symbols. A derivation is provided in x3 of the generic atomic

displacement matrix and anisotropic temperature-factor

matrix. The symmetry restrictions of the atomic displacement

matrix are discussed in x4. Speci®c explicit formulas are

derived in x5 for the semi-axis lengths and rotation angles of

the anisotropic thermal ellipsoid up to dimension n � 3,

including their symmetries and taking into account certain

special cases. The Euler angles for dimension n � 3 are

derived in Appendix A.

2. Direct and reciprocal basis vectors

For describing the n-dimensional thermal ellipsoids, it is

convenient to provide a few new symbols relating to the direct

and reciprocal basis vectors. Let i � 1; . . . ; n be the index over

the dimensions, and let feig be an orthonormal basis in

n-dimensional space, which means that

ei � ej � �ij; �1�

where �ij is the Kronecker delta:

�ij � 1 if i � j

0 if i 6� j.

�
�2�

In practice, this ®xed non-crystallographic orthonormal basis

speci®es a chosen reference orientation in the experimental

set-up, and the crystallographic direct and reciprocal basis

vectors as well as the anisotropic thermal ellipsoid semi-axis

lengths and rotation angles have coordinates on this ®xed

orthonormal basis. Let the matrices A � fAijg and A� � fA�ijg
have as columns the coordinates on this orthonormal basis of

two sets of basis vectors faig and fa�i g, respectively, so that

(Trueblood et al., 1996)

Aij � ei � aj �3�
A�ij � ei � a�j : �4�



Let the vector r have coordinates on the orthonormal basis

feig and let the vectors x and x� be the same as vector r, but

with coordinates on the basis faig and fa�i g, respectively

(Sands, 1982; Giacovazzo, 1992; Shmueli, 1993a). Then,

r � A � x � A� � x�: �5�
From (5) follows

x� � A�ÿ1 � A � x: �6�
Let the lengths of and the mutual angles between the faig and

fa�i g be given, that is the following matrices are given:

G � AT � A �7�
G� � A�T � A� �8�
Q � AT � A�: �9�

The matrices G and G� are the metric matrices (Giacovazzo,

1992) and the matrix Q is the mixed matrix (Shmueli, 1993a).

Then (6) can also be written as (Shmueli, 1993a)

x� � Qÿ1 �G � x �10�
and as

x� � G�ÿ1 �QT � x: �11�
Combination of (10) and (11) yields

G� � QT �Gÿ1 �Q �12�
and equivalently

G � Q �G�ÿ1 �QT : �13�
The formulas above are valid for any two sets of basis vectors

faig and fa�i g. If faig and fa�i g are both orthonormal, then

G � G� � I, and A, A� and Q are orthogonal matrices. For

the crystallographic direct and reciprocal basis vectors, faig
and fa�i g are mutually reciprocal:

ai � a�j � �ij; �14�
which means that (Shmueli, 1993a)

Q � I �15�
and (9) yields

A� � �Aÿ1�T �16�
and equivalently

A � �A�ÿ1�T : �17�
For any dimension n, (16) and (17) give the generic relations

between mutually reciprocal crystallographic basis vectors faig
as columns of A and fa�i g as columns of A�. With (5), this

yields:

r � r � x � x� �18�
This means that x and x� are covariant and contravariant

components of the vector r (Borisenko & Tarapov, 1968;

Sands, 1982, 1993; Shmueli, 1993a). Now let the direct unit cell

of an n-dimensional crystal lattice be spanned by the crystal-

lographic direct basis faig. This direct unit cell may be

composed of more than one asymmetric unit cell, depending

on the space group. The vector x of the fractional coordinates

of vector r in this direct unit cell, which are the coordinates on

the crystallographic direct basis faig, becomes with (5):

x � Aÿ1 � r: �19�
The n-dimensional volume of this direct unit cell is

V � jdet�A�j: �20�
The symbols de®ned above can also be used in Fourier

analysis. The Fourier transform of the electron density of a

number of atoms evaluates to (Giacovazzo, 1992; Shmueli,

1993a; Trueblood et al., 1996)

F�h� � PN
��1

f��jhj�T��h� exp�2�ih � r��; �21�

where N is the number of atoms, � � 1; . . . ;N is the index

over the atoms, h is the diffraction vector (Shmueli, 1993a), r�
is the position of atom �, and the f��jhj� are the spherical

atomic scattering factors (Coppens, 1993; Trueblood et al.,

1996), which are tabulated (Maslen et al., 1992). The atomic

temperature factor T��h� is the Fourier transform of the

thermal probability distribution of the individual atom

(Coppens, 1993; Trueblood et al., 1996). For an n-dimensional

crystal lattice, the diffraction vector h in (21) is restricted to

the reciprocal lattice (Giacovazzo, 1992; Bricogne, 1993;

Shmueli, 1993a):

h �Pn
i�1

hia
�
i ; �22�

where the fhig is any set of n integers, which are the Miller

indices. The number of atoms N in (21) is now restricted to the

number of atoms in the unit cell. Let the vector h� be the

vector of this set of Miller indices, which are the coordinates of

the diffraction vector on the crystallographic reciprocal basis

fa�i g:

h� �
h1

..

.

hn

0B@
1CA �23�

and (22) becomes:

h � A� � h�: �24�
Combination of (5), (16) and (24) yields

h � r � h� � x: �25�
The n-dimensional volume of the reciprocal unit cell is

V� � jdet�A��j; �26�
which with (16) and (20) becomes

V� � 1=V: �27�

3. Atomic displacement parameters

In this section, a description is provided of the n-dimensional

atomic displacement matrix, which determines the semi-axis
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lengths and rotation angles of the n-dimensional thermal

ellipsoid. The atomic displacement parameters are the

elements of this matrix. In general, the thermal motion of

atoms in matter should be assumed anisotropic because of the

binding forces. Isotropic thermal motion is a special case. Let n

be the dimension of the diffracting object, and let feig be the

orthonormal reference basis as above. Let the matrix C

transform the n-dimensional anisotropic thermal ellipsoid into

an n-dimensional unit sphere:

C � diag�f1=�ig� �D: �28�
The f�ig are the lengths of the n mutually perpendicular semi-

axes of the ellipsoid and D is the orthogonal rotation matrix

that rotates each semi-axis of length �i onto reference axis ei.

The thermal probability distribution of the n-dimensional

atomic displacement vector u for anisotropic thermal motion

is a normalized n-dimensional ellipsoidal normal distribution

(Willis & Pryor, 1975; Prince, 1982):

P�u� �
��������������
det�W�
�2��n

s
exp�ÿ 1

2 u �W � u�; �29�

where the matrix W is

W � CT � C: �30�
From (30), it follows that W is symmetric and that det�W�> 0.

The thermal probability distribution (29) is normalized:

1 � R
u

P�u� dnu: �31�

The coordinates of the displacement vector are

ui � ei � u: �32�
The expectation value huiuji is, by de®nition,

huiuji �
R
u

uiujP�u� dnu: �33�

Let the atomic displacement matrix U � fUijg be de®ned by

(Lipson & Cochran, 1966; Willis & Pryor, 1975)

Uij � huiuji: �34�
Let the elements of matrix W be de®ned as W � fWijg. For the

exponential in (29), it follows that

@

@Wij

exp�ÿ 1
2 u �W � u� � ÿ 1

2 uiuj exp�ÿ 1
2 u �W � u�: �35�

As W is symmetric, expansion of det�W� in cofactors

(Gradshteyn & Ryzhik, 1980) yields

@

@Wij

det�W� � �Wÿ1�ij det�W�: �36�

Combination of (29), (31), (33), (34), (35) and (36) proves that

the atomic displacement matrix U is the inverse of W:

U � Wÿ1: �37�
As W is symmetric, U is also symmetric and, as det�W�> 0,

det�U�> 0. The total mean square displacement is

hjuj2i � trace�U�: �38�

Evaluation of (37) with (28) and (30) yields

U � DT � diag�f�2
i g� �D: �39�

This means that the f�2
i g are the eigenvalues of U. From (39), it

follows that Pn
i�1

�2
i � n�2; �40�

where

� �
�����������������
trace�U�

n

r
: �41�

From (38) and (41), it follows that �2 is the mean square

displacement per dimension, also called Ueq (Trueblood et al.,

1996). For isotropic thermal motion, D � I, �i � � and

U � diag��2�. From (29), it follows that the following ellip-

soids have constant probability (Willis & Pryor, 1975):

u �W � u � c2: �42�
The ellipsoid with c � 1 has semi-axes with lengths �i. The

probability distribution of c, which is P�c�, is proportional to

(29) times the surface of an n-dimensional sphere:

P�c� � 21ÿn=2cnÿ1

ÿ�n=2� exp�ÿ 1
2 c2�; �43�

where ÿ�x� is the Gamma function (Gradshteyn & Ryzhik,

1980). The expectation values of the powers of c, which are the

moments of P�c�, are functions of dimension n:

hcmi � ÿ��n�m�=2�
ÿ�n=2� 2m=2: �44�

When displaying the thermal ellipsoid of an atom, it seems

reasonable to display the ellipsoid with semi-axis lengths

hci�i, with hci computed from (44). For dimension n � 1,

hci ' 0:7979. For dimension n � 2, hci ' 1:2533. For dimen-

sion n � 3, hci ' 1:5958, which is close to the value of

c � 1:5382 (Willis & Pryor, 1975) of an ellipsoid that encloses

half of the total probability. The Fourier transform of the

thermal probability distribution (29) yields (Bricogne, 1993;

Trueblood et al., 1996)

T�h� � exp�ÿ2�2h � U � h�; �45�
which is the atomic temperature factor to be substituted in

(21). Combination with (21) yields the following expectation

value (Wilson, 1942):

hjF�h�j2i � PN
��1

f 2
� �jhj� exp�ÿ4�2h � U� � h�: �46�

The dimensionless matrix �, which is the anisotropic

temperature-factor matrix (Willis & Pryor, 1975; Trueblood et

al., 1996), can be de®ned in terms of matrices A and A�

de®ned in (3) and (4):

� � 2�2A�T � U � A� �47�
and equivalently with (16):



U � 1

2�2
A � � � AT : �48�

On crystallographic axes, the Fourier transform (21) becomes,

with (24), (25), (45) and (48) (Shmueli, 1993a),

F�h�� � PN
��1

f��jhj� exp�ÿh� � �� � h�� exp�2�ih� � x��; �49�

where h� is the vector of Miller indices de®ned by (23), h is

given by (24), �� is the anisotropic temperature-factor matrix

of atom � and x� is the vector with the fractional coordinates in

the crystallographic direct unit cell of atom �, which is given by

(19).

4. Symmetry restrictions

For understanding the symmetries of the thermal ellipsoids,

®rst the symmetry restrictions of the atomic displacement

matrix are provided in terms of the new symbols de®ned in the

previous sections. A symmetry operation S of a space group

operates on vector x of the fractional coordinates on the

crystallographic direct unit-cell basis faig, de®ned in (5) and

(19):

S�x� � R � x� t; �50�
where the orthogonal matrix R is the rotation and/or inversion

part and the vector t is the translation part of the symmetry

operation, which are tabulated (Hahn, 1983; Janssen et al.,

1999, 2002). The symmetry operator S0, equivalent to S in (50)

but operating on vector r with coordinates on the orthonormal

reference basis feig, becomes with (5) and (50):

S0�r� � R0 � r� A � t; �51�
where the matrix R0 is

R0 � A � R � Aÿ1 �52�
and where A and r are de®ned in (3) and (5). The symmetry

operation equivalent to S in (50) in reciprocal space on the

crystallographic reciprocal basis fa�i g is (Shmueli, 1993b)

S��h�� � �Rÿ1�T � h� � R � h� �53�
and with (17) and (52) on the orthonormal basis feig:

S�0�h� � �R0ÿ1�T � h � A� � R � A�ÿ1 � h: �54�
Any symmetry operator S0 of the space group on the ortho-

normal basis in direct space, de®ned by (51), leaves the elec-

tron density invariant:

��r� � ��S0�r��; �55�
from which follows for the Fourier transform (49) with (53)

(Waser, 1955a; Giacovazzo, 1992; Shmueli, 1993b):

F�R � h�� � F�h�� exp�2�ih� � t�; �56�
where R and t are de®ned in (50). From this equation, the

restricted phase re¯ections and systematic absences can be

derived (Giacovazzo, 1992; Shmueli, 1993b). In addition, on

the special positions of the space group in the direct unit cell,

the thermal probability distribution (29) must be invariant to

any symmetry-operator matrix R0, de®ned by (52), of the point

group of the special position (Giacovazzo, 1992):

P�u� � P�R0�u��: �57�

Combination of (29), (37), (48), (52) and (57) yields

� � RT � � � R; �58�

where � is the anisotropic temperature-factor matrix of the

atom on the special position, and where the orthogonal matrix

R is any symmetry-operator matrix on the crystallographic

basis in direct space belonging to the point group of the special

position, which are tabulated (Hahn, 1983; Janssen et al., 1999,

2002). As the thermal distribution (29) itself is centrosym-

metric, the number of symmetries considered is reduced

(Giacovazzo, 1992). The resulting restrictions on the � matrix

for dimension n � 3 can be found in the literature (Willis &

Pryor, 1975; Giacovazzo, 1992; Prince et al., 1992).

The symmetry restrictions described in this section restrict

the possible values of the anisotropic temperature-factor

matrix and the atomic displacement matrix. In addition,

depending on the degeneracy of their eigenvalues, symmetry is

present in the possible semi-axis lengths and rotation angles of

the thermal ellipsoid, which is described in the next section.

5. Thermal ellipsoid lengths and angles

In this section, the semi-axis lengths and rotation angles of the

thermal ellipsoid of an atom are derived for speci®c dimen-

sions, given that the atomic displacement matrix U � fUijg of

that atom has been experimentally determined. The semi-axis

lengths are directly related to the eigenvalues of U and the

orientation of the ellipsoid can be described by the eigen-

vectors of U (Cerrini, 1971; Prince, 1982). As the lengths of the

eigenvectors are already given by the eigenvalues, the only

new parameters are their rotation angles. Furthermore, the

resulting formulas for the rotation angles can be simpli®ed in

certain special cases, depending on the degeneracy of the

eigenvalues.

For dimension n � 1, (39) yields � � � � �������
U11

p
and D � I.

For dimension n � 2, the matrix D is a two-dimensional

rotation matrix:

D � R��� � cos��� sin���
ÿ sin��� cos���

� �
; �59�

where � is the clockwise rotation angle which rotates each

ellipse semi-axis of length �i onto reference axis ei. The

clockwise angle of the ellipse axes with respect to the refer-

ence basis is ÿ�. Then, solving (39) with (59) yields
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� �
��������������������
U11 � U22

2

r
�60�

�1 � �
����������������������������������������������������������������������������������
1� sign�U11 ÿ U22�

U11 � U22

���������������������������������������
�U11 ÿ U22�2 � 4U2

12

qs
�61�

�2 � �
����������������������������������������������������������������������������������
1ÿ sign�U11 ÿ U22�

U11 � U22

���������������������������������������
�U11 ÿ U22�2 � 4U2

12

qs
�62�

� � 1
2 arctan

2U12

U11 ÿ U22

� �
; �63�

where sign�x� is the sign of x. Note that interchanging U11 and

U22 leads to interchanging �1 and �2 and changing the sign of

�. A special case occurs when U11 � U22 and U12 � 0, in which

case �1 � �2 � � and � � 0 (isotropic thermal vibration). In

this case, the ellipse becomes a circle.

For dimension n � 3, the matrix D is a three-dimensional

rotation matrix, which is a product of three rotation matrices

around the ®xed reference axes:

D � R3��3� � R2��2� � R1��1�; �64�

where Ri��i� is the rotation matrix around the ®xed reference

axis ei with the clockwise angle �i:

R1��1� �
1 0 0

0 cos��1� sin��1�
0 ÿ sin��1� cos��1�

0B@
1CA �65�

R2��2� �
cos��2� 0 ÿ sin��2�

0 1 0

sin��2� 0 cos��2�

0B@
1CA �66�

R3��3� �
cos��3� sin��3� 0

ÿ sin��3� cos��3� 0

0 0 1

0B@
1CA: �67�

As mentioned, D rotates each semi-axis of length �i onto

reference axis ei. Solving (39) with (64) yields

p � 1
2 ��U11 ÿ U22�2 � �U11 ÿ U33�2 � �U22 ÿ U33�2�
� 3�U2

12 � U2
13 � U2

23� �68�
q � 3�U11 � U22��U11 � U33��U22 � U33�
ÿ 2�U3

11 � U3
22 � U3

33�
ÿ 18�U11U22U33 � 3U12U13U23�
ÿ 9�U11 � U22 � U33��U2

12 � U2
13 � U2

23�
� 27�U11U2

23 � U22U2
13 � U33U2

12� �69�

� �
��������������������������������
U11 � U22 � U33

3

r
�70�

� � arccos
q

2
�����
p3

p !
�71�

�1 � �
����������������������������������������������������������
1ÿ 2

���
p
p

U11 � U22 � U33

cos
�

3

� �s
�72�

�2 � �
���������������������������������������������������������������������
1ÿ 2

���
p
p

U11 � U22 � U33

cos
�� 2�

3

� �s
�73�

�3 � �
���������������������������������������������������������������������
1ÿ 2

���
p
p

U11 � U22 � U33

cos
�ÿ 2�

3

� �s
�74�

v � U2
12 � U2

13 � �U11 ÿ �2
3��U11 � �2

3 ÿ �2
1 ÿ �2

2�
��2

2 ÿ �2
3���2

3 ÿ �2
1�

�75�

w � U11 ÿ �2
3 � ��2

3 ÿ �2
2�v

��2
1 ÿ �2

2�v
: �76�

In the case that v � 0, then w � 1. The angles �2 and �3 are

�2 � � arccos� ���
v
p � �77�

�3 � � arccos� ����
w
p �: �78�

The signs of �2 and �3 are determined below. Let the two-

dimensional vectors f1, f2, g1 and g2 be

f1 �
U12

ÿU13

� �
�79�

f2 �
U22 ÿ U33

ÿ2U23

� �
�80�

g1 �
1
2 ��2

1 ÿ �2
2� cos��2� sin�2�3�

1
2 ���2

1 ÿ �2
2�w� �2

2 ÿ �2
3� sin�2�2�

� �
�81�

g2 �
��2

1 ÿ �2
2��1� �vÿ 2�w� � ��2

2 ÿ �2
3�v

��2
1 ÿ �2

2� sin��2� sin�2�3�

� �
: �82�

For the lengths of these vectors,

jg1j � jf1j �83�
jg2j � jf2j: �84�

Let angle�v� be the angle of a two-dimensional vector v with

respect to the positive x axis, and let the angles  1 and  2 be

 1 � angle�f1� �85�
 2 � angle�f2�: �86�

Let R��� be the two-dimensional rotation matrix de®ned in

(59). Then �1 is given by two equations:

�1�1� � angle�R� 1� � g1� �87�
�1�2� � 1

2 angle�R� 2� � g2�: �88�
For solving the angles, of the four sign combinations of �2 and

�3 in (77) and (78), the sign combination with the smallest

difference between �1�1� and �1�2� is selected. Because jf1j or

jf2j can be zero, one is selected:

�1 �
�1�1� if jf1j � jf2j
�1�2� if jf1j < jf2j.

�
�89�

The clockwise Euler angles in the xyz sequence (Kuipers,

1999) of the axes of the ellipsoid with respect to the reference

basis are fÿ�1;ÿ�2;ÿ�3g (see Appendix A). The fourfold

rotation symmetry of the ellipsoid is generated by adding � to



the angles �2 and/or �3 in (77) and (78). In the previous

equations, changing the order of �1, �2 and �3 is compensated

by change of the resulting angles �1, �2 and �3, thus always

generating the identical ellipsoid belonging to the atomic

displacement matrix U � fUijg.
A special case occurs when p � 0, in which case q � 0,

�1 � �2 � �3 � � and �1 � �2 � �3 � 0. In this case, the

ellipsoid becomes a sphere (isotropic thermal vibration).

Another special case occurs when q2 � 4p3 6� 0, in which

case two of the three �i values are equal. In this case, the

ellipsoid becomes a spheroid, also called ellipsoid of revolu-

tion. In this case, choosing the order of �1, �2 and �3 such

that

�1 � �2 � � �90�

yields the following equations for the angles:

s � U11 ÿ �2
3

�2 ÿ �2
3

�91�

�2 � � arccos� ��
s
p � �92�

�3 � 0 �93�

g1 �
0

1
2 ��2 ÿ �2

3� sin�2�2�
� �

�94�

g2 �
��2 ÿ �2

3�s
0

� �
: �95�

The other equations are identical to the general case, except

that only two sign combinations in (92) are possible. The

twofold rotation symmetry of this type of ellipsoid is gener-

ated by adding � to the angles �2 in (92).

The two special cases mentioned can occur coincidentally

for atoms on general positions or systematically because of

symmetry elements for atoms on certain special positions. The

effect of the latter is already accounted for when determining

the atomic displacement matrix itself (see previous section), so

for the formulas above no symmetry considerations other than

the ones mentioned are needed.

A computer program has been developed that uses the

formulas in this section to compute the semi-axis lengths and

Euler angles of the thermal ellipsoid of any atomic displace-

ment matrix for dimension n � 3. This computer program can

be obtained from the author via e-mail.

6. Conclusions

The matrix A� and the vector h� are useful for describing the

atomic displacement matrix and anisotropic temperature-

factor matrix for generic dimension n. The moments of the

probability distribution of the anisotropic thermal ellipsoids

have been expressed as functions of dimension n. The semi-

axis lengths and rotation angles of the ellipsoids have been

expressed as functions of the atomic displacement matrix for

speci®c dimensions n � 2 and n � 3, taking into account the

special cases.

APPENDIX A
Euler angles

A three-dimensional rotation can always be written as a

sequence of three rotations around the ®xed reference axes as

in (64):

D � R3��3� � R2��2� � R1��1�: �96�
Such a rotation can also be written as a sequence of three

rotations around reference axes that are themselves also

rotated. This type of rotation is called an Euler rotation

sequence (Altmann & Ryzhik, 1986; Kuipers, 1999). When the

®rst rotation R1��1� around the e1 axis or x axis also rotates the

other reference axes, then the second rotation is a rotation

around the new rotated e2 axis or y axis, which is denoted with

a prime: R02��2�. This new rotation is

R02��2� � R1��1� � R2��2� � R1��1�ÿ1: �97�
When this second rotation also rotates the other reference

axes, then the third rotation around the new rotated e3 axis or

z axis yields a similar identity. The resulting complete Euler

rotation sequence is

R003��3� � R02��2� � R1��1� � R1��1� � R2��2� � R3��3�: �98�
The left-hand side is an Euler rotation in the xyz sequence

(Kuipers, 1999), with angles f�1; �2; �3g. This equation means

that a rotation sequence around ®xed reference axes is equal

to an Euler rotation sequence around rotating reference axes

with identical angles but in reverse order. As the resulting

rotation D in (64) rotates the ellipsoid axes onto the reference

axes, the orientation of the ellipsoid with respect to the

reference axes is the inverse of D. For this, the following

identity is used:

R���ÿ1 � R�ÿ��; �99�
which yields with (96)

Dÿ1 � R1�ÿ�1� � R2�ÿ�2� � R3�ÿ�3� �100�
and which with (98) is equal to

Dÿ1 � R003�ÿ�3� � R02�ÿ�2� � R1�ÿ�1�: �101�
The Euler rotation angles in the xyz sequence that give the

orientation of the ellipsoid with respect to the reference axes

thus are fÿ�1;ÿ�2;ÿ�3g.
The author would like to thank Dr R. Peschar for useful

suggestions.
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